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We use quantum Monte Carlo simulations to study the phase diagram of hard-core bosons with short-ranged
attractive interactions, in the presence of uniform diagonal disorder. It is shown that moderate disorder stabi-
lizes a glassy superfluid phase in a range of values of the attractive interaction for which the system is a Mott
insulator, in the absence of disorder. A transition to an insulating Bose glass phase occurs as the strength of the
disorder or interactions increases.
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I. INTRODUCTION

The interplay of superfluidity and localization in disor-
dered Bose systems has been the subject of intense study for
two decades.1 Most of the theoretical investigative effort has
been focused on the quantum phase transition between a su-
perfluid and insulating phase. For example, it has been es-
tablished that disorder leads to the appearance of an �insulat-
ing� Bose glass, sandwiched between the superfluid and Mott
insulating phases. This topic is enjoying continued interest,
especially since cold atom physicists have recently produced
controllable disorder using laser speckles,2,3 and looked at
such phenomena as Anderson localization of a one-
dimensional condensate2,4 and the suppression of the con-
densate fraction in three dimensions.3

The idea of “superglass” has come to the forefront in the
context of the investigation of �super�solid 4He. The super-
glass phase was initially observed in quantum Monte Carlo
simulations, in which the superfluid phase had an inhomoge-
neous condensate map on a microscopic scale.5 Biroli et al.
proved that such a superglass phase does exist �at least as a
metastable phase� by introducing an �artificial� model which
could be mapped to a classical system of hard spheres and
studied in a controlled fashion.6 Recent experiments on solid
4He have confirmed the strong interplay between a superfluid
component and a slow �glassy� dissipative component.7

However, little is known yet about the superglass phase, and
specifically about the actual role of disorder in promoting or
enhancing superfluidity. Given the current controversies and
puzzles surrounding the interpretation of experiments on the
possible supersolid phase of helium, further investigations of
superfluid glassy phases are thus warranted.

In this paper, we provide strong numerical evidence for
disorder-induced superfluidity in a lattice realization of hard-
core bosons with a strong nearest-neighbor attraction, in the
presence of external disorder. In particular, we show that at
low temperature and in a small range of attractive interac-
tions, disorder of sufficient strength stabilizes a “glassy” su-
perfluid phase. The superfluid density reaches a maximum
and then decays as the strength of the disorder increases, as
an insulating glassy phase intervenes. In contrast to the case
of repulsive bosons where disorder reduces the size of the
superfluid phase, we see that strongly attracting hard-core
bosons can be stabilized and made superfluid by disorder. In

other words, disorder induces superflow in an otherwise in-
sulating phase. Aside from supersolid 4He, such a scenario is
possibly relevant to other condensed matter systems, e.g.,
high-temperature superconductors,8 as well as to the elusive
superfluid phase of molecular hydrogen,9 and to the role of
substrate disorder in the superfluidity of �sub�monolayer he-
lium films.10

II. MODEL

We describe a disordered Bose system by means of the
following Hamiltonian:

H = − t�
�ij�

�âi
†âj + h . c .� + V�

�ij�
n̂in̂j + �

i

�in̂i. �1�

We consider here a square lattice of N=L�L sites, with
periodic boundary conditions. The sums �ij� run over all
pairs of nearest-neighboring lattice sites, âi

† �âi� is the Bose
creation �annihilation� operator for a particle at site i, and
n̂i= âi

†âi is the local density operator. The first term of Eq. �1�
represents the hopping of particles to nearest-neighboring
sites. Henceforth, we choose the hopping integral t as our
energy unit.

The second term represents the interaction among bosons.
A hard-core on-site repulsion is assumed, limiting the occu-
pation of every site to no more than one particle. For the
nearest-neighbor interaction, essentially all previous work
based on �1� has focused on the repulsive case, i.e., V�0,
chiefly to elucidate the nature of the disorder-driven super-
fluid to insulator transition.12 An enhancement of superfluid-
ity by disorder has been predicted in some cases.11 Here, on
the other hand, we consider the case of attractive nearest-
neighbor interaction �i.e., negative V=−�V��, and neglect in-
teractions among particles lying at distances greater than
nearest neighbors. With this choice, Hamiltonian �1�, which
is essentially a lattice model of quantum “sticky” spheres, is
isomorphic to that of a spin-1/2 XXZ quantum ferromagnet.

We model disorder by means of a random on-site poten-
tial �i, uniformly distributed in the interval �−� ,��. Other
theoretical representations of a disordered environment could
be considered, e.g., one in which the hopping matrix element
t randomly varied from site to site, but in this paper we
restricted ourselves to the above, widely adopted diagonal
model of disorder.11,12 In the spin language, the disordering
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potential is equivalent to a random on-site magnetic field
along the z axis.

In the absence of disorder, the ground state of Eq. �1� is a
superfluid for �V��2, whereas for �V��2 only a Mott insu-
lating phase exists, with exactly one particle per site, regard-
less of lattice geometry and dimensionality. This is simply
because the system can maximally lower its energy by hav-
ing each particle surrounded by as many nearest-neighboring
particles as possible, trumping any contribution from the
hopping term. The regime of interest in this work is the
latter, i.e., that in which no superfluid phase exists in the
absence of disorder.

III. METHODOLOGY

We perform grand-canonical quantum Monte Carlo simu-
lations to study the ground-state properties of Eq. �1�, using
the Worm Algorithm in the lattice path-integral
representation.13,14 As the details of this computational
method are extensively described elsewhere, and because the
calculations performed here are standards, we shall not re-
view it here, and simply refer interested readers to the origi-
nal references.

The results shown here correspond to a temperature T
sufficiently low �typically 	=1 /T=L� to be regarded as es-
sentially ground-state estimates. Simulations are carried out
over square lattice of size varying from L=12 to L=96, and
estimates are averaged over a number M of independent re-
alizations of the random disordering potential, typically M
=100�20� for L=12�96�.

IV. RESULTS

Figure 1 shows the average particle density 
 as a func-
tion of the chemical potential �, for a particular value of �V�
greater than 2 ��V�=2.3�. For weak disorder �i.e., small ��,
the ground state of the system has exactly one particle per
site, with an abrupt density jump at � / �V�=2, when the lat-
tice turns from empty to fully filled. However, for disorder of

sufficient strength �Fig. 1 shows results for �=3�, the density
jump disappears, being replaced by a smooth curve, signal-
ing continuous dependence of density on chemical potential.
In other words, the disorder stabilizes phases at intermediate
densities, consisting of interconnected “clusters” of particles,
pinned by local fluctuations of the disordering potential. In
this situation, the value � / �V�=2 corresponds to a particle
density 
=0.5.

Clearly, the issue immediately arises whether such phases
of intermediate density may turn superfluid at low T and
what the nature would be of such a disordered superfluid
phase, simultaneously featuring broken translational invari-
ance. We investigated the occurrence of superfluid behavior
by directly calculating the superfluid density 
S �using the
standard winding number estimator�. Figure 2 shows 
S as a
function of particle density 
, in the limit T→0, for one of
the choices of model parameters of Fig. 1, namely, �=3 and
�V�=2.3. The superfluid density increases from zero and
reaches a maximum value at half filling, where approxi-
mately 12% of the system is superfluid.

Obviously, numerical data such as those shown in Fig. 2
must be extrapolated to the L→�, so that we may confi-
dently make the statement that superfluidity observed in
these systems is not merely a finite-size effect but survives in
the thermodynamic limit. The inset of Fig. 2 shows a typical
extrapolation; estimates are shown for the superfluid density
obtained for a fixed particle density 
=0.5, on square lattices
of different sizes �12, 24, 48, and 96�, for �V�=2.3 and �
=3. It is worth restating that these estimates are obtained by
averaging results corresponding to several independent real-
izations of the disordering potential. Based on results such as
those shown in the inset of Fig. 2, we conclude that the
superfluid signal remains finite in the thermodynamic limit.
In general, we have observed that results obtained on a lat-
tice with L=96 offer a close representation of the physics of
the thermodynamic limit, at least in the range of parameters
discussed here.

-3 -2.5 -2 -1.5 -1
µ/

0

0.25

0.5

0.75

1
ρ

∆ = 9.0
∆ = 3.0
∆ = 0.5

|V|

FIG. 1. �Color online� Ground-state density 
 versus chemical
potential � for �V�=2.3, for weak ��=0.5, squares�, intermediate
��=3.0, circles�, and strong ��=9.0, triangles� disorder. Results
shown are for a lattice of size L=96, and are obtained by averaging
over 20 independent realizations of the disorder. Statistical errors
are smaller than symbol sizes.
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FIG. 2. �Color online� Superfluid density 
S versus particle den-
sity 
 for �V�=2.3 and disorder strength �=3. Statistical errors are
smaller than symbol sizes. Results shown are for a square lattice
with L=96, and 	=L, and are obtained by averaging over 20 inde-
pendent realizations of the disorder. The solid line is a guide to the
eye. Inset: Superfluid density for a fixed particle density 
=0.5,
computed on square lattices of varying size L. Extrapolation to
infinite system size still gives a finite superfluid density.
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Additional numerical evidence of superfluidity is ex-
tracted from the behavior of the one-particle density matrix
n�r�, shown in Fig. 3 for the case �V�=2.3 and �=3. The data
are consistent with quasi-long-range order, as expected in
two dimensions, namely, a power-law decay of n�r� at long
distances.

The observed superfluid phase is ostensibly induced by
disorder, which stabilizes uniform phases of filling interme-
diate between zero and one. In order to gain further insight
and in-depth understanding of the role of disorder in actually
promoting superfluidity, it is interesting to study the compe-
tition between the strength of disorder ��� and that of the
attractive boson interaction ��V��. For definiteness, we con-
sider the case of half filling, corresponding to a maximum in
the superfluid density �for those systems for which superflu-
idity is observed�. The same trends are also observed away
from half filling.

When the disorder is weak �� �V��, it cannot break apart
clusters of particles; hence the system remains insulating, as
shown in Fig. 4 or by the vanishing compressibility �
=d
 /d� for �=0.5 in Fig. 1. There are thus macroscopic
domains �empty or fully filled� with hidden long-range order
in the system.15,16 When the disorder becomes of the order of

the attraction ��� �V��, sites and regions begin to appear
throughout the system where the chemical potential is low
enough to rip particles off the cluster, which then breaks
down into large grains. These particles, however, are still
largely localized in the vicinity of the energetically favorable
sites created by disorder, as the curve for �=2 in Fig. 5
shows.

If we further increase the disorder strength, the grain size
decreases to a microscopic scale, a �relatively� large fraction
of the particles are delocalized, and superfluidity along inter-
faces �ridges� becomes possible, as also shown in previous
numerical studies.5,17 This effect takes place essentially due
to percolation. We can thus say that the disorder counters the
insulating trend caused by the attractions and actually makes
the system superfluid. This is shown in Fig. 4 where we see
a rather large superfluid fraction as a function of disorder.
Naturally, as the disorder strength is increased even further,
insulating glassy behavior reappears, because the disorder is
now so strong that it can block any superfluid path and lo-
calize particles, much as in the case of repulsive interactions.

A similar scenario takes place on increasing the interac-
tion strength �V� at constant disorder bound �, as shown in
Fig. 5. We have already explained the steep decay in the
curve corresponding to �=2� �V� above, due to the lack of
carriers. When � is greater than �V�, the disorder is suffi-
ciently strong to destroy all macroscopic domains, and su-
perfluidity can occur all over the sample. But as the disorder
becomes stronger, it prevents particle world lines from wind-
ing around the lattice. In the regime of strong disorder, both
the disorder and the attractive interactions contribute to sup-
press superfluidity, as regions with nearly uniform chemical
potential will be insulating due to the strong attraction,
which pulls particles together in such regions.

It is worth noting that the above scenario is quite different
from that of the repulsive-disordered Bose-Hubbard model,
where regions of uniform chemical potential are crucial for
stabilizing locally a liquid phase, and thus the superfluid
properties and the compressibility of the whole system.1 We
also note here that this insulating phase is compressible, as
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FIG. 3. �Color online� One-body density matrix n�r� for �V�
=2.3 and disorder strength �=3. Statistical errors are smaller than
symbol sizes. Results shown are for a square lattice with L=96, and
	=L, and are obtained by averaging over 20 independent realiza-
tions of the disorder. Data show a weak power-law decay of n�r� at
long distances.

FIG. 4. �Color online� Maximum value of the superfluid density

S �attained for 
=0.5� versus disorder strength � for different at-
tractive interactions V. Statistical errors are smaller than symbol
sizes. Solid lines are only meant to guide the eye.

FIG. 5. �Color online� Maximum value of the superfluid density

S �attained for 
=0.5� versus absolute value of attractive interac-
tion �V� for different diagonal disorder � at inverse temperature 	
=96. Statistical errors are smaller than symbol sizes. Results shown
are for a square lattice with L=96. The solid lines are a guide to the
eye.
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shown in Fig. 1 for �=9t, which justifies the nomenclature
“Bose glass.”1 The compressibility at half filling goes from
zero in the phase-segregated regime �no disorder� to a large
value in the superfluid phase, and then decreases monotoni-
cally over the Bose glass phase, when increasing the disorder
bound at constant interaction strength.

This superglass phase can be visualized through local su-
perfluid density maps, shown in Fig. 6, for a particular real-
ization of disorder. The local value is obtained by statistically
averaging local contributions to the total superfluid density
�i.e., to the square of the winding number�, which, in the case
shown in Fig. 6 for �=3 and �V�=2.3, amounts to slightly
less than 7%. We found that the covariance between the su-
perfluid density and the disordering potential is virtually
zero, i.e., for these values of the parameters the physics is
mostly driven by the attraction between bosons, consistent
with the picture given above in the case of strong disorder
and strong attraction.

V. CONCLUSIONS

We have shown that disorder induces a superfluid phase in
a lattice system of hard-core bosons with a strong nearest-
neighbor attraction. While the system without disorder is an
insulator of the ferromagnetic Ising type, the disorder can
induce an inhomogeneous superfluid �or superglass� phase
�corresponding to in-plane order in the spin parlance� in a
window of interaction and disorder strengths. For stronger
disorder bounds, the disorder and the attractive interactions
work together to localize the particles. The coherence in-
duced by disorder might easily be observable in time-of-
flight images for ultracold atoms or molecules.

In the absence of disorder, the physics of our model is
reminiscent of that of molecular parahydrogen, long specu-
lated to be a potential “second superfluid,” due to the light
mass of its constituents �one half of that of helium atoms�.
On the other hand, superfluidity is not observed in parahy-
drogen due to the strength of the intermolecular potential,
which causes the system to crystalize at temperatures signifi-
cantly above that at which Bose Condensation is expected to
take place.18 Recent numerical studies9 have shown that dis-
order ought not give rise to a superfluid phase of parahydro-
gen. Based on the results obtained in this paper, we may
argue that parahydrogen may be a system too “deep” into the
insulating regime �i.e., the effective value of �V� is too large�
for disorder to stabilize a superfluid phase.

On the other hand, the results obtained here suggest that
disorder may be responsible for the observation of superflu-
idity in helium films at coverages corresponding to less than
a full monolayer. It should be noted, though, that helium
films are expected to be superfluid at “negative” pressure, in
fact all the way down to the spinodal density,19 rendering
them essentially different than what is discussed here.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Science
and Engineering Research Council of Canada under research
Grant No. G121210893, by the Alberta Informatics Circle of
Research Excellence, and by the Swiss National Science
Foundation. One of us �M.B.� gratefully acknowledges the
hospitality of the Institute of Theoretical Physics, University
of Innsbruck.

1 M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Phys. Rev. B 40, 546 �1989�.

2 J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,
D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Nature �London� 453, 891 �2008�; L. Sanchez-Palencia, D. Clé-
ment, P. Lugan, P. Bouyer, and A. Aspect, New J. Phys. 10,
045019 �2008�.

3 M. White, M. Pasienski, D. McKay, S. Q. Zhou, D. Ceperley,
and B. DeMarco, Phys. Rev. Lett. 102, 055301 �2009�.

4 G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zac-
canti, G. Modugno, M. Modugno, and M. Inguscio, Nature
�London� 453, 895 �2008�.

5 M. Boninsegni, N. Prokof’ev, and B. Svistunov, Phys. Rev. Lett.
96, 105301 �2006�.

6 G. Biroli, C. Chamon, and F. Zamponi, Phys. Rev. B 78, 224306
�2008�.

7 J. C. Davis �private communication�.
8 See, for instance, J. C. Phillips, Proc. Natl. Acad. Sci. U.S.A.

105, 9917 �2008�.
9 J. Turnbull and M. Boninsegni, Phys. Rev. B 78, 144509 �2008�.

10 H. Cho and G. A. Williams, Phys. Rev. Lett. 75, 1562 �1995�; G.
A. Csáthy, J. D. Reppy, and M. H. W. Chan, ibid. 91, 235301
�2003�.

11 W. Krauth, N. Trivedi, and D. M. Ceperley, Phys. Rev. Lett. 67,

FIG. 6. Map of the local superfluid density for a particular dis-
order realization, on a square lattice with L=96, �V�=2.3, and �
=3. The total superfluid density 
S equals 0.068�1� for this run. The
white areas are small insulating grains, connected by superfluid
interfaces.

DANG, BONINSEGNI, AND POLLET PHYSICAL REVIEW B 79, 214529 �2009�

214529-4



2307 �1991�.
12 M. Makivic, N. Trivedi, and S. Ullah, Phys. Rev. Lett. 71, 2307

�1993�; M. Wallin, E. S. Sorensen, S. M. Girvin, and A. P.
Young, Phys. Rev. B 49, 12115 �1994�; F. Alet and E. S. So-
rensen, Phys. Rev. E 67, 015701�R� �2003�; N. Prokof’ev and
B. Svistunov, Phys. Rev. Lett. 92, 015703 �2004�.

13 N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, Phys. Lett.
A 238, 253 �1998�; JETP 87, 310 �1998�.

14 L. Pollet, K. V. Houcke, and S. M. A. Rombouts, J. Comput.

Phys. 225, 2249 �2007�.
15 E. T. Seppälä, V. Petäjä, and M. J. Alava, Phys. Rev. E 58,

R5217 �1998�.
16 Y. Imry and S. Ma, Phys. Rev. Lett. 35, 1399 �1975�.
17 E. Burovski, E. Kozik, A. Kuklov, N. Prokof’ev, and B. Svis-

tunov, Phys. Rev. Lett. 94, 165301 �2005�.
18 V. L. Ginzburg and A. A. Sobyanin, JETP Lett. 15, 242 �1972�.
19 M. Boninsegni, M. W. Cole, and F. Toigo, Phys. Rev. Lett. 83,

2002 �1999�.

DISORDER-INDUCED SUPERFLUIDITY PHYSICAL REVIEW B 79, 214529 �2009�

214529-5


